CustomDataset

class colibri.data.datasets.CustomDataset(name, path='data', builtin_train=True, builtin_download=True, transform_dict={})[source]

Bases: Dataset

Custom dataset.

This class allows to load custom datasets and apply transformations to the data.

The datasets that can be currently loaded are:
  • ‘cifar10’

  • ‘mnist’

  • ‘fashion_mnist’

  • ‘cave’

This class is divided in two parts:
  • builtin datasets: datasets that are predefined in the repository.

  • custom datasets: datasets that are not predefined in the repository.

The builtin datasets are loaded using the function load_builtin_dataset from the module colibri.data.utils. The custom datasets are loaded using the function get_filenames from the module colibri.data.utils. The transformations are applied to the data using the torchvision.transforms module.

The default transformations are:
  • input: transforms.ToTensor()

  • output: transforms.ToTensor()

Parameters:
  • name (string) – Name of the dataset. Current options are: (‘cifar10’, ‘cifar100’, ‘mnist’, ‘fashion_mnist’, ‘cave’).

  • path (string) – Path to directory with the dataset.

  • builtin_train (bool) – Whether to load the training or test set. This option is only available for builtin datasets.

  • builtin_download (bool) – Whether to download the dataset if it is not found. This option is only available for builtin datasets.

  • transform_dict (dict,object) – Dictionary with the transformations to apply to the data.

Examples using CustomDataset:

Demo Colibri.

Demo Colibri.

Demo Datasets.

Demo Datasets.

Demo DOEs.

Demo DOEs.

Demo Fast SD CASSI.

Demo Fast SD CASSI.

Demo FISTA.

Demo FISTA.

Demo Filtered Spectral Initialization

Demo Filtered Spectral Initialization

Demo PnP.

Demo PnP.