CustomDataset

class colibri.data.datasets.CustomDataset(name, path='data', transform_dict={}, **kwargs_builtin)[source]

Bases: Dataset

Custom dataset.

This class allows to load custom datasets and apply transformations to the data.

The datasets that can be currently loaded are:
  • ‘cifar10’

  • ‘mnist’

  • ‘fashion_mnist’

  • ‘cave’

This class is divided in two parts:
  • builtin datasets: datasets that are predefined in the repository.

  • custom datasets: datasets that are not predefined in the repository.

The builtin datasets are loaded using the function load_builtin_dataset from the module colibri.data.utils. The custom datasets are loaded using the function get_filenames from the module colibri.data.utils. The transformations are applied to the data using the torchvision.transforms module.

The default transformations are:
  • input: transforms.ToTensor()

  • output: transforms.ToTensor()

Parameters:
  • name (string) – Name of the dataset. Current options are: (‘cifar10’, ‘cifar100’, ‘mnist’, ‘fashion_mnist’, ‘cave’).

  • path (string) – Path to directory with the dataset.

  • transform_dict (dict,object) – Dictionary with the transformations to apply to the data.

  • kwargs_builtin (dict,object) – Dictionary with the parameters to load the builtin datasets, each pytorch dataset has its own parameters please refer to the pytorch documentation.

Examples using CustomDataset:

Demo Datasets.

Demo Datasets.

Demo FISTA.

Demo FISTA.

Demo PnP.

Demo PnP.

Demo DOEs.

Demo DOEs.

Demo Colibri.

Demo Colibri.