L2
- class colibri.recovery.terms.fidelity.L2[source]
Bases:
Module
L2 fidelity
\[f(\mathbf{x}) = \frac{1}{2}||\forwardLinear(\mathbf{x}) - \mathbf{y}||^2_2\]- forward(x, y, H=None)[source]
Computes the L2 fidelity term.
- Parameters:
x (torch.Tensor) – The image to be reconstructed.
y (torch.Tensor) – The measurement data to be reconstructed.
H (function, optional) – The forward model. Defaults to None.
- Returns:
The L2 fidelity term.
- Return type:
torch.Tensor
- grad(x, y, H=None, transform=None)[source]
Compute the gradient of the L2 fidelity term.
\[\nabla f(\mathbf{x}) = \nabla \frac{1}{2}||\forwardLinear(\mathbf{x}) - \mathbf{y}||^2_2\]- Parameters:
x (torch.Tensor) – Input tensor.
y (torch.Tensor) – The measurement data to be reconstructed.
H (function) – Forward model.
- Returns:
Gradient of the L1 fidelity term.
- Return type:
torch.Tensor
Examples using L2
:
Demo FISTA.
Demo PnP.