L2L2Solver
- class colibri.recovery.solvers.core.L2L2Solver(y, acquisition_model)[source]
Bases:
Solver
Base class for linear solvers.
It describes the close-form solution of the optimization problem.
\[\min_{\textbf{x}} \frac{1}{2}||\textbf{y} - \textbf{H}\textbf{x}||_2^2 + \rho||\textbf{x} - \tilde{\textbf{x}}||_2^2\]- Parameters:
y (torch.Tensor) – Input tensor with shape (B, *)
acquisition_model (BaseOpticsLayer) – Acquisition model
- solve(xtilde, rho)[source]
Solves the optimization problem by computing the following expression:
\[\hat{\textbf{x}} = (\textbf{H}^\top\textbf{H} + \rho \textbf{I})^{-1}(\textbf{H}^\top\textbf{y} + \rho \tilde{\textbf{x}})\]- Parameters:
xtilde (torch.Tensor) – Regularizaton tensor
rho (float) – Regularization parameter
- Returns:
Recovered tensor
- Return type:
torch.Tensor